(1)

$$
\begin{aligned}
& E_{F}=\hbar\left(3 \pi^{2} n\right)^{\frac{1}{3}} \approx 9.7 \mathrm{eV} \\
& P_{F}=\left(2 m^{*} E_{F}\right)^{\frac{1}{2}} \approx 1.5 \cdot 10^{-19} \frac{\mathrm{~g} \cdot \mathrm{~cm}}{\mathrm{~s}} \\
& V_{F}=\frac{p_{F}}{m^{*}} \approx 2.1 \cdot 10^{8} \frac{\mathrm{~cm}}{\mathrm{~s}}
\end{aligned}
$$

(2)

The total energy of quasiparticles consists of those of transverse and lomgituclinal motion

$$
E=-E_{0}+\frac{k^{2}}{2 m^{*}} \quad \text { (Af measured from }
$$

the potential barrier in $A \mid G a A s$)
me require $E<0$ for election states to be confined to this $1 D$ wire In principle, there may be electrons propagating along the mire with higher energies, but they will get scattered in the transverse direction by imperfections.
So, the maximum longitudinal momentum is $k_{F}=\left(2 m^{*} E_{0}\right)^{\frac{1}{2}}$
The $1 D$ density of els

$$
k_{=}^{1 D} \text { density }-h \quad,\left(2 m^{*} E_{0}\right)^{\frac{1}{2}}
$$

The ${ }_{b} D$ density or w.

$$
\begin{aligned}
& \text { The } 1 D \text { density }{ }^{1 D} \int_{-k_{F}}^{k_{F}} \frac{d k_{2}}{2 \pi}=\frac{2 k_{F}}{\pi}=\frac{2\left(2 m^{*} E_{0}\right)^{\frac{1}{2}}}{\pi} \\
& \pi-2\left(2 m^{*} E_{0}\right)^{\frac{1}{2}}
\end{aligned}
$$

Recovering $t, \quad n=\frac{2\left(2 \mathrm{~m}^{*} E_{0}\right)^{\frac{1}{2}}}{\pi t}=1.93 \cdot 10^{6} \mathrm{~cm}^{-1}$
(3)

Heat capacity of graphene

Camphene has 2 quasporticley for each momentum \vec{p} : in the conduction band (c) and in the valence band (v) (We do not consiger spin here)
$\varepsilon(\vec{p})= \pm v p$, as you may
find by diagonalising the Hamiltsmian Particle excitations in the conduction band are equivalent to hole excitations in the valence band, so it's enough \hbar consider only one of them

$$
\begin{aligned}
& E=2 S \int \frac{d^{2} p}{(2 \pi \hbar)^{2}} \varepsilon_{p} f\left(\varepsilon_{p}\right)= \\
& -2 S \int \frac{2 \pi p d p}{(2 \pi \hbar)^{2}} \frac{v p}{e^{\frac{\nu v}{T}}+1}=\frac{S}{\pi \hbar^{2}} \frac{T^{3}}{v^{2}} \int_{0}^{\infty} \frac{x^{2} d x}{e^{x}+1}=
\end{aligned}
$$

$$
\begin{aligned}
& -2) \int \frac{\pi}{(2 \pi \hbar)^{2}} \frac{e^{\frac{p v}{T}}+1}{\pi} \hbar^{2} v^{2} \underbrace{J}_{0} e^{x}+1 \\
& =\frac{3 \xi(3) S}{2 \pi \hbar^{2} v^{2}} T^{3}, S \text { - area of the graphene shect } \\
& C=\frac{9 \xi(3) S}{2 \pi \hbar^{2} v^{2}} T^{2}
\end{aligned}
$$

